Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface engineering in Cu(In,Ga)Se2 solar cells

Identifieur interne : 000435 ( Main/Repository ); précédent : 000434; suivant : 000436

Surface engineering in Cu(In,Ga)Se2 solar cells

Auteurs : RBID : Pascal:13-0193152

Descripteurs français

English descriptors

Abstract

Surface modifications of three-stage co-evaporated Cu(In,Ga)Se2 (CIGS) thin films are investigated by finishing the evaporation with gallium-free (CuInSe2, CIS) stages of various lengths. Secondary-ion mass spectrometry shows substantial interdiffusion of indium and gallium, smearing out the Ga/(Ga + In) profile so that the addition of a CIS layer merely lowers the gallium content at the surface. For the thinnest top layer, equivalent to 20 nm of pure CIS, X-ray photoelectron spectroscopy does not detect any compositional difference compared with the reference device. The modifications are evaluated electrically both by temperature-dependent characterisation of actual solar-cell devices and by modelling, using the latest version of SCAPS-1D (Electronics and Information Systems, Ghent University, Belgium). The best solar-cell device from this series is obtained for the 20 nm top layer, with an efficiency of 16.6% after antireflective coating. However, we observe a trend of decreasing open-circuit voltage for increasingly thick top layers, and we do not find direct evidence that the lowering of the gallium concentration at the CIGS surface should generally be expected to improve the device performance. A simulated device with reduced bulk and interface defect levels achieves nearly 20% efficiency, but the trends concerning the CIS top layer remain the same.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0193152

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surface engineering in Cu(In,Ga)Se
<sub>2 </sub>
solar cells</title>
<author>
<name sortKey="Schleussner, Sebastian Michael" uniqKey="Schleussner S">Sebastian Michael Schleussner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Electronics, Uppsala University</s1>
<s2>Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pettersson, Jonas" uniqKey="Pettersson J">Jonas Pettersson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Electronics, Uppsala University</s1>
<s2>Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Torndahl, Tobias" uniqKey="Torndahl T">Tobias Törndahl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Electronics, Uppsala University</s1>
<s2>Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Edoff, Marika" uniqKey="Edoff M">Marika Edoff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Electronics, Uppsala University</s1>
<s2>Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0193152</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0193152 INIST</idno>
<idno type="RBID">Pascal:13-0193152</idno>
<idno type="wicri:Area/Main/Corpus">000D24</idno>
<idno type="wicri:Area/Main/Repository">000435</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antireflection coating</term>
<term>Belgium</term>
<term>Copper selenides</term>
<term>Defect level</term>
<term>Electronic component</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Indium</term>
<term>Indium selenides</term>
<term>Information system</term>
<term>Interdiffusion</term>
<term>Modeling</term>
<term>Multistage circuit</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Secondary ion mass spectrometry</term>
<term>Solar cell</term>
<term>Surface properties</term>
<term>Surface treatment</term>
<term>Temperature dependence</term>
<term>Temperature effect</term>
<term>Ternary compound</term>
<term>Thick film</term>
<term>Thin film</term>
<term>X-ray photoelectron spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Traitement surface</term>
<term>Cellule solaire</term>
<term>Propriété surface</term>
<term>Circuit multiétage</term>
<term>Spectrométrie SIMS</term>
<term>Diffusion mutuelle</term>
<term>Spectre photoélectron RX</term>
<term>Effet température</term>
<term>Dépendance température</term>
<term>Modélisation</term>
<term>Composant électronique</term>
<term>Système information</term>
<term>Belgique</term>
<term>Evaluation performance</term>
<term>Revêtement antiréfléchissant</term>
<term>Tension circuit ouvert</term>
<term>Couche épaisse</term>
<term>Niveau défaut</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Gallium</term>
<term>Composé ternaire</term>
<term>Indium</term>
<term>Cu(In,Ga)Se2</term>
<term>CuInSe2</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Belgique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composant électronique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surface modifications of three-stage co-evaporated Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films are investigated by finishing the evaporation with gallium-free (CuInSe
<sub>2</sub>
, CIS) stages of various lengths. Secondary-ion mass spectrometry shows substantial interdiffusion of indium and gallium, smearing out the Ga/(Ga + In) profile so that the addition of a CIS layer merely lowers the gallium content at the surface. For the thinnest top layer, equivalent to 20 nm of pure CIS, X-ray photoelectron spectroscopy does not detect any compositional difference compared with the reference device. The modifications are evaluated electrically both by temperature-dependent characterisation of actual solar-cell devices and by modelling, using the latest version of SCAPS-1D (Electronics and Information Systems, Ghent University, Belgium). The best solar-cell device from this series is obtained for the 20 nm top layer, with an efficiency of 16.6% after antireflective coating. However, we observe a trend of decreasing open-circuit voltage for increasingly thick top layers, and we do not find direct evidence that the lowering of the gallium concentration at the CIGS surface should generally be expected to improve the device performance. A simulated device with reduced bulk and interface defect levels achieves nearly 20% efficiency, but the trends concerning the CIS top layer remain the same.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surface engineering in Cu(In,Ga)Se
<sub>2 </sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHLEUSSNER (Sebastian Michael)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PETTERSSON (Jonas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TÖRNDAHL (Tobias)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>EDOFF (Marika)</s1>
</fA11>
<fA14 i1="01">
<s1>Solid State Electronics, Uppsala University</s1>
<s2>Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>561-568</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000174777700170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0193152</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Surface modifications of three-stage co-evaporated Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin films are investigated by finishing the evaporation with gallium-free (CuInSe
<sub>2</sub>
, CIS) stages of various lengths. Secondary-ion mass spectrometry shows substantial interdiffusion of indium and gallium, smearing out the Ga/(Ga + In) profile so that the addition of a CIS layer merely lowers the gallium content at the surface. For the thinnest top layer, equivalent to 20 nm of pure CIS, X-ray photoelectron spectroscopy does not detect any compositional difference compared with the reference device. The modifications are evaluated electrically both by temperature-dependent characterisation of actual solar-cell devices and by modelling, using the latest version of SCAPS-1D (Electronics and Information Systems, Ghent University, Belgium). The best solar-cell device from this series is obtained for the 20 nm top layer, with an efficiency of 16.6% after antireflective coating. However, we observe a trend of decreasing open-circuit voltage for increasingly thick top layers, and we do not find direct evidence that the lowering of the gallium concentration at the CIGS surface should generally be expected to improve the device performance. A simulated device with reduced bulk and interface defect levels achieves nearly 20% efficiency, but the trends concerning the CIS top layer remain the same.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Traitement surface</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Surface treatment</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Tratamiento superficie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété surface</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Surface properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad superficie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Circuit multiétage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Multistage circuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Circuito multipiso</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Spectrométrie SIMS</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Secondary ion mass spectrometry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espectrometría SIMS</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Diffusion mutuelle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Interdiffusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Difusión mútua</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composant électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic component</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Componente electrónico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Système information</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Information system</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sistema información</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Belgique</s0>
<s2>NG</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Belgium</s0>
<s2>NG</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Belgica</s0>
<s2>NG</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Revêtement antiréfléchissant</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Antireflection coating</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Revestimiento antirreflexión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche épaisse</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thick film</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa espesa</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Niveau défaut</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Defect level</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Europe</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Europa</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000435 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000435 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0193152
   |texte=   Surface engineering in Cu(In,Ga)Se2 solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024